

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: PROBABILITY, NUMERICAL METHODS AND TRANSFORMS (20HS0832) Course & Branch: B.Tech - EEE

Year &Sem: II-B.Tech. & I-Sem.

Regulation: R20

<u>UNIT -I</u> PROBABILITY

1. a)	A class consists of 6 girls and 10 boys. If a committee of 3 is chosen at random from		
	the class, find the Probability that (i) 3 boys are selected (ii) Exactly 2 girls are		
	selected.	[L1][CO1]	[6M]
b)	Two cards are selected at random from 10 cards numbered 1 to 10. Find the		
	probability that the sum is even if (i) The two cards are drawn together. (ii) The two		
	cards drawn one after other with replacement.	[L1][CO1]	[6M]
2. a)	In a group there are 3men and 2 women. Three persons are selected at random from		
	this group. Apply the probability that one man and two women or two men and one		
	women are selected.	[L3][CO1]	[6M]
b)	Five persons in a group 20 are engineers. If three persons are selected at random,		
	determine the probability that all engineers and the probability that at least one being		
	an engineer.	[L5][CO1]	[6M]
3. a)	Out of 15 items 4 are not in good condition 4 are selected at random. Find the		
	probability that (i) All are not good (ii) Two are not good	[L3][CO1]	[6M]
b)	Three students A, B, C are in running race. A and B have the same Probability of		
	winning and each is twice as likely to win as C. Find the Probability that B or C		
	wins.	[L1][CO1]	[6M]
4. a)	From a city 3 newspapers A, B, C are being published. A is read by 20%, B is read		
	by 16%, C is read by 14% both A and B are read by 8%, both A and C are read by		
	5% both B and C are read by 4% and all three A,B,C are read by 2%. Find out the		
	percentage of the population that read at least one paper	[L1][CO1]	[6M]
b)	What is the probability that a card drawn at random from the pack of playing cards		
	may be either a queen or a king?	[L1][CO1]	[6M]
5. a)	A class has 10 boys and 5 girls. Three students are selected at random one after		
	another. Find the probability that (i) First two are boys and third is girl. (ii) First and		
	third are of same sex and the second is of opposite sex.	[L3][CO1]	[6M]
b)	Two marbles are drawn in succession from a box containing 10 red, 30 white, 20		
	blue and 15 orange marbles, with replacement being made after each draw. Find the		
	probability that (i) Both are white (ii) First is red and second is white.	[L1][CO1]	[6M]
6. a)	In a certain town 40% have brown hair, 25% have brown eyes and 15% have both		
	brown hair and brown eyes. A person is selected at random from the town.		
	i) If he has brown hair, determine the probability that he has brown eyes also?		
	ii) If he has brown eyes, determine the probability that he does not have brown hair?	[L5][CO1]	[8M]
b)	The probability that students A B C D solve the problem are $\frac{1}{2} = \frac{2}{2} = \frac{1}{2}$ and $\frac{1}{2}$		
- /	The probability that students A, B, C, D solve the problem are $3, 5, 5$ and 4		
	respectively If all of them try to solve the problem, what is the probability that the	H 11 CO 11	F 43 43
	problem is solved.		[4M]
7.	Two dice are thrown. Let A be the event that the sum of the point on the faces is 9.		
	Let B be the event that at least one number is 6. Find (i) $P(A \cap B)$ (ii) $P(A \cup B)$		
	(iii) $P(A^c \cup B^c)$ (iv) $P(A^c \cap B^c)$ (v) $P(A^c \cap B)$	[L1][CO1]	[12M]

Cour	rse Code: 20HS0832	R2 ()
8. a)	Determine (i) $P(B_A)$ (ii) $P(A_B^c)$ if A and B are events with $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{4}$,		
	$P(A \cup B) = \frac{1}{2}.$	[L5][CO1]	[6M]
b)	A businessman goes to hotel X, Y, Z, 20%, 50%, 30% of the time respectively. It is		
	known that 5%, 4%, 8% of the rooms in X, Y, Z hotels have faulty plumbing what is		
	the probability that businessman's room having faulty plumbing is assigned to hotel	II 11[CO1]	[6M]
	Z		
9.	In a certain college 25% of boys and 10% of girls are studying mathematics. The		
	girls Constitute 60% of the student body. (a) What is the probability that mathematics is being studied? (b) If a student is selected at random and is found to		
	be studying mathematics, find the probability that the student is a girl (c) a boy.		
		[L1][CO1]	[12M]
10.	In a bolt factory machines A, B, C manufacture 20%,30% and 50% of the total of		
	their output and 6%,3% and 2% are defective. A bolt is drawn at random and found	EL 415 CO 41	[1 2]
	to be detective. Find the probabilities that it is manufactured from (i) Machine A (ii) Machine B (iii) Machine C	[LI][CO1]	

<u>UNIT –II</u> NUMERICAL SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS & INTERPOLATION

1.	By using Bisection method to find the square root of 25, when $x_0 = 2.0$, $x_1 = 7.0$						[L3][CO3]	[12M]	
2.	By applying Bisection method to find a positive root of $x^3 - x - 1 = 0$ correct to two decimal places.						[L3][CO3]	[12M]	
3.	Find real root of the equation $3x = e^x$ by Bisection method.						[L1][CO2]	[12M]	
4.	Find a real root of the	e equation	$n x e^x - co$	sx = 0 usin	g Newtor	n – Raphs	son method.	[L1][CO2]	[12M]
5.	Using Newton-Raphs	son metho	od (i) Finc	l square ro	pot of 28	(ii) Find	cube root of 15	[L3][CO3]	[12M]
6	a) Using Newton-Rap	phson me	thod to va	alue the re	ciprocal o	of 12		[L3][CO3]	[6M]
0.	b) Find a real root of the equation $xtanx+1=0$ using Newton – Raphson method.					[L1][CO2]	[6M]		
7.	Determine the root of the equation $x \log_{10}(x) = 1.2$ using False position method.							[L5][CO2]	[12M]
8	What is the root of the	e equation	$\sin x \ e^x = 2$	using Reg	gula-falsi	method.		[L1][CO2]	[12M]
	From the following table values of x and $y=tan x$. Find the values of y when $x=0.12$ and $x=0.28$								
9	x	0.10	0.15	0.20	0.25	0.30		[L1][CO3]	[12M]
	У	0.1003	0.1511	0.2027	0.2553	0.3093			
	a) Using Newton's fo	orward in	terpolatio	n formula	and the	viven tab	e of values		
	$\frac{x}{x}$	1.1	1.3	1.5	1.7	1.9		[] 3][CO3]	[6M]
	f(x) = 0.21 = 0.69 = 1.25 = 1.89 = 2.61							[ΟΙΝΙ]	
10.	Obtain the value of $f(x)$ when $x=1.4$								
	b) Use Newton's backward interpolation formula to find $f(32)$ given $f(25)=0.2707$, $f(30)=0.3027$, $f(35)=0.3386$, $f(40)=0.3794$.					[L3][CO3]	[6M]		

<u>UNIT –III</u> NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS & NUMERICAL INTEGRATION

R 21

1.	Tabulate y(0.1), y(0.2) and y(0.3) using Taylor's series method given that $y^1 = y^2 + x$ and y(0) = 1	[L2][CO4]	[12M]
2.	a) Solve $y^1 = x + y$, given y (1)=0 find y(1.1) and y(1.2) by Taylor's series method.	[L3][CO4]	[6M]
	b) Solve $\frac{dy}{dx} = xy^2 + y$, given y(0)=1 using Taylor's series method and find y(0.1) and y(0.2)	[L3][CO4]	[6M]
3.	Evaluate by Taylor's series method, find an approximate value of y at x=0.1 and 0.2 for the D.E $y^{11} - x(y^1)^2 + y^2 = 0$; $y(0) = 1$, $y^1(0) = 0$.	[L5][CO4]	[12M]
4.	Applying Euler's method, find an approximate value of y corresponding to $x=1$ given that $\frac{dy}{dx} = x + y$ and $y = 1$ when $x = 0$ taking step size h=0.1	[L3][CO4]	[12M]
5.	a) Solve by Euler's method $y' = y^2 + x$, $y(0)=1$ and find $y(0.1)$ and $y(0.2)$	[L3][CO4]	[6M]
	b) Solve by Euler's method $\frac{dy}{dx} = \frac{2y}{x}$ given y(1)=2 and find y(2)	[L3][CO4]	[6M]
6.	Using modified Euler's method find $y(0.2)$ and $y(0.4)$, given $y^1 = y + e^x$, $y(0) = 0$	[L3][CO4]	[12M]
7.	Using R-K method of 4 th order find y(0.1),y(0.2) and y(0.3) given that $\frac{dy}{dx} = 1 + xy, \ y(0) = 2.$	[L3][CO4]	[12M]
8.	Using R-K method of 4 th order find y(0.1) and y(0.2) given that $\frac{dy}{dx} = x + y, y(0) = 1.$	[L6][CO4]	[12M]
9.	a) Compute $\int_0^{\pi/2} sinx dx$ using Trapezoidal rule, Simpson's $\frac{1}{3}$ rule and compare with exact value	[L5][CO4]	[6M]
	b) Calculate $\int_{0}^{4} e^{x} dx$ by Simpson's $\frac{3}{8}$ rule with 12 sub divisions.	[L3][CO4]	[6M]
10.	Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ (i) by Trapezoidal rule and Simpson's $\frac{1}{3}$ rule. (ii) Using Simpson's $\frac{3}{8}$ rule and compare the result with actual value	[L5][CO4]	[12M]

<u>UNIT –IV</u> LAPLACE TRANSFORMS

1	a) Find the Laplace transform of $f(t) = e^{3t} - 2e^{-2t} + sin2t + cos3t + sinh3t - 2cosh4t + 9.$	[L1][CO5]	[6M]
	b) Find the Laplace transform of $f(t) = \cosh at \sin bt$	[L1][CO5]	[6M]
2	a) Find the Laplace transform of $f(t) = \left(\sqrt{t} + \frac{1}{\sqrt{t}}\right)^3$.	[L1][CO5]	[6M]
	b) Find the Laplace transform of $e^{-3t}(\cos 4t + 3\sin 4t)$	[L1][CO5]	[6M]
	a) Find the Laplace transform of $3\cos^4(t-2)u(t-2)$	[L1][CO5]	[6M]
3	b) Find $L\{e^{-3t}sinh3t\}$ using change of scale property.	[L3][CO5]	[6M]
	a) Find the Laplace transform of $f(t) = t^2 e^{2t} \sin 3t$.	[L1][CO5]	[6M]
4	b) Find the Laplace transform of $f(t) = \frac{1 - \cos at}{t}$	[L1][CO5]	[6M]
	a) Find the Laplace transform of $f(t) = \int_{0}^{t} e^{-t} \cos t dt$.	[L1][CO5]	[6M]
5	b) Find the Laplace transform of $f(t) = e^{-4t} \int_{0}^{t} \frac{\sin 3t}{t} dt$.	[L1][CO5]	[6M]
	a) Show that $\int_{0}^{\infty} t^2 e^{-4t} \cdot \sin 2t dt = \frac{11}{500}$, Using Laplace transform.	[L2][CO5]	[6M]
6	b) Using Laplace transform, evaluate $\int_{0}^{\infty} \frac{\cos at - \cos bt}{t} dt$.	[L5][CO5]	[6M]
7	a) Find $L^{-1}\left\{\frac{3s-2}{s^2-4s+20}\right\}$ by using first shifting theorem.	[L1][CO5]	[6M]
	b) Find $L^{-1}\left\{\log\left(\frac{s-a}{s-b}\right)\right\}$	[L1][CO5]	[6M]
8	a) Find $L^{-1}\left\{\frac{3(s^2-2)^2}{2s^5}\right\}$	[L1][CO5]	[6M]
8	b) Find inverse Laplace transform of $\frac{s^2 + s - 2}{s(s+3)(s-2)}$, using partial fractions.	[L1][CO5]	[6M]
9	a) Find the Inverse Laplace transform of $\frac{1}{s(s^2 + a^2)}$	[L1][CO5]	[6M]
	b) Find $L^{-1}\left\{s\log\left(\frac{s-1}{s+1}\right)\right\}$	[L1][CO5]	[6M]
10	a) Using Convolution theorem, Find $L^{-1}\left\{\frac{1}{\left(s^2+5^2\right)^2}\right\}$	[L3][CO5]	[6M]
	b) Using Convolution theorem, Find $L^{-1}\left\{\frac{1}{(s+a)(s+b)}\right\}$	[L3][CO5]	[6M]

<u>UNIT –V</u> APPLICATIONS OF LAPLACE TRANSFORMS & Z - TRANSFORMS

1	a) Using Laplace Transform method to solve $y^1 + y = 1$ where $y(0) = 0$	[L3][CO5]	[4 M]
	b) Apply Laplace transform method to solve $y^{11} + 7y^1 + 10y = 4e^{-3t}$ where $y(0) = 0$, $y^1(0) = -1$	[L6][CO5]	[8M]
2	Solve the D.E. $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x = 3te^{-t}$ using Laplace Transform given that $x(0) = 4; \frac{dx}{dt} = 0.at, t = 0$	[L3][CO5]	[12M]
3	a) Applying linearity property, find the Z –transforms of the following functions (i) $an^2 + bn + c$ (ii) $(n-1)^2$	[L3][CO6]	[6M]
	b) Determine the value of $Z[(-2)^n]$	[L5][CO6]	[6M]
4	Determine the value of $Z(\cos nt) Z(\sin nt) Hence \ find(i) \ Z(n \cos nt) \ (ii) \ Z(n \sin nt)$	[L5][CO6]	[6M]
5	a) Find $Z\left\{\frac{1}{n(n+1)}\right\}$	[L1][CO6]	[6M]
	b)Find Z –transform of the following (i) e^{-an} (ii) ne^{-an} (iii) n^2e^{-an} (iv) na^n	[L1][CO6]	[6M]
6	a) If $f(z) = \frac{5z^2 + 3z + 12}{(z-1)^4}$, What are the values of $f(2)$ and $f(3)$?	[L1][CO6]	[6M]
	b) Calculate the value of $Z\left\{\frac{1}{(n+2)(n+1)}\right\}$	[L3][CO6]	[6M]
_	a)Find $Z^{-1}\left[\frac{z}{z^2 + 11z + 24}\right]$	[L1][CO6]	[6M]
7	b) Find the inverse Z –transform of $\frac{2z^2 + 3z}{(z+2)(z-4)}$	[L1][CO6]	[6M]
	a)Calculate $Z^{-1}\left[\frac{z^2}{(z-1)(z-3)}\right]$, Using Convolution theorem.	[L3][CO6]	[6M]
8	b)Compute the value of $Z^{-1}\left[\left(\frac{z}{z-a}\right)^2\right]$, Using Convolution theorem	[L3][CO6]	[6M]
9	Using the Z –transform, Solve $y_{n+2} + 2y_{n+1} + y_n = n$. given that $y_0 = y_1 = 0$	[L6][CO6]	[12M]
10	Solve the difference equation using Z –transform, $y_{n+2} - 3y_{n+1} + 2y_n = 0$ giventhat $y_0 = 0, y_1 = 1$	[L3][CO6]	[12M]